Transport Properties of Hydrogen

James R. Stallcop*

NASA Ames Research Center, Moffett Field, California 94035-1000

Eugene Levin†

Eloret Corporation, Moffett Field, California 94035-1000

and

Harry Partridge‡

NASA Ames Research Center, Moffett Field, California 94035-1000

Transport cross sections and collision integrals have been calculated for interactions of hydrogen atoms and diatomic molecules. These results were determined using accurate potential energies and quantum mechanical formulations of the scattering. Collision integrals have been tabulated for H-H and H_2-H_2 , and have been applied to determine diffusion and viscosity. The variation of transport properties with temperature and relative composition is examined for a gas formed from H atoms and H_2 molecules. The inversion temperature is found to be about a factor 3 lower than that of earlier estimates.

Nomenclature

 a_0 = Bohr radius, 5.291772×10^{-9} cm D = coefficient of diffusion, cm²/s D^* = reduced coefficient of diffusion

E = collision energy, E_h k = wave number

l = angular momentum quantum number

P = Legendre polynomial

p = pressure, atm

Q = transport cross section, a_0^2 r = separation distance, a_0 T = temperature, K V = potential energy F

V = potential energy, E_h α = thermal diffusion factor

 γ = polar angle

 η = coefficient of viscosity, g/(cms) η^* = reduced coefficient of viscosity

 κ = Boltzmann constant μ = reduced mass, amu $\sigma^2\Omega$ = collision integral, Å² ϕ = azimuthal angle

Introduction

THE transport properties of hydrogen are needed for studies of heavy-planet atmospheric entry and certain propulsion systems for satellites and other space vehicles. Transport data for hydrogen have been calculated by Vanderslice et al. from approximate potential energies. Some of these results have been improved by Svehla, using approximate theoretical results and experimental data. Accurate potential energies have been calculated for the interaction of the atoms and ions of air and a number of interactions involving molecules; we have applied these results to the determination of transport data. Our tabulations of calculated transport data are extended to include the interactions for the atoms and molecules of hydrogen in the present work. We have applied the best interaction

data in a quantum mechanical calculation of the scattering to obtain accurate transport data. Thus, the present results at low energies or temperatures are preferable to the corresponding results that were obtained using classical mechanics. The H-H results are expected to be accurate to three or four significant figures. The present tabulations for H₂-H₂ allow a more definitive determination of transport properties above the highest temperature (about 600 K) of the absolute measurements of the viscosity. The transport properties of a mixture can be determined to second-order using the results of our tabulations. The results of this work are also important for developing combining relations to determine transport properties for the collisions of complex molecules.

Interaction Potential Energies

Accurate H-H interaction energies have been calculated by Kołos and Wolniewicz.^{7,8} We have extended these results to large separation distances r using extremely well-known values of the dispersion coefficients. 9,10 The potential energy surface for H-H₂ interactions has been calculated accurately by Partridge et al. 11; the position r_m of the well minimum and the well depth \bar{V}_m of the spherically averaged potential energy $\bar{V}(r)$ are predicted to be 6.51 \pm 0.03 a_0 and 75 \pm 3 μE_h , respectively. The potential energies are extended to large r with the dispersion coefficients calculated by Bishop and Pipin¹² and by Meyer, which are found in Ref. 13. We have shown that the theoretical $\bar{V}(r)$ agrees well with the corresponding result deduced from scattering measurements.¹⁴ Schaefer and Köhler¹⁵ determined a potential energy surface for H₂-H₂ interactions by an adjustment of ab initio potential energies to yield calculated data that agree with measured values of the second virial coefficient and measured scattering cross sections; the values of r_m and \bar{V}_m are $6.50a_0$ and $11\bar{1}.7\mu E_h$, respectively. Their interaction energies have been shown to reproduce discriminating spectroscopic measurements. 16-18

The repulsive wall of the H_2 – H_2 potential energy surface is not very sensitive to the measurements. Furthermore, the potentials deduced from scattering measurements are not necessarily unique. Only the leading term $\bar{V}(r)$ in an expansion of the ab initio energies in spherical harmonics requires adjustment to provide a fit to measured virial data, primarily, because the potential anisotropy is found to be small. Consequently, the small uncertainty in the repulsive wall of Ref. 15 for small r can be readily reduced by the application of more accurate values of $\bar{V}(r)$.

Received Feb. 18, 1998; revision received June 30, 1998; accepted for publication July 1, 1998. Copyright © 1998 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

^{*}Physicist, Computational Chemistry Branch, Space Technology Division, M/S 230-3.

[†]Senior Research Scientist, Thermosciences Institute, M/S 230-3. ‡Chemist, Computational Chemistry Branch, Space Technology Division, M/S 230-3.

A careful calculation of the interaction energy (that are free of the basis set superposition error¹⁹) tends to overestimate the repulsive energy because of the difficulty in obtaining convergence even for the simplest molecular systems. We have found that a rotation of the short-range repulsion energy V_{SR} is suitable for lowering ab initio potential energies to fit measured virial data. 19 This procedure retains the interaction energy at large r, which is necessary when the long-range force constants are known accurately, and also accounts for the decreasing relative error in ab initio calculations at small r. The repulsive potential at small r for the present calculations has been obtained from the $V_{SR}(r)$ that is determined from the ab initio $\bar{V}(r)$ of Meyer et al.²⁰ that have been rotated at the crossing point $r_x = 3.5a_0$ to fit $\bar{V}(5a_0)$ listed in Ref. 15. This lowering of the ab initio potential energy was selected to accomodate a fit at the highest temperature (423 K) of the measurements of the second virial coefficient of para hydrogen.²¹ This potential modification results in a slight lowering (by at most about 1%) of the viscosity coefficient relative to the corresponding values¹⁴ obtained from the potential energy of Ref. 15 at high temperatures.

Calculation of Transport Cross Sections and Collision Integrals

Assuming electron-spin degeneracy, for H-H interactions we have taken the mean transport cross section $\bar{Q}_n(E)$ for a collision energy E to be the degeneracy-weighted average²²

$$\bar{Q}_n(E) = \frac{1}{4} Q_n^X(E) + \frac{3}{4} Q_n^b(E) \tag{1}$$

where $Q_n^X(E)$ and $Q_n^b(E)$ are the cross sections for the bound $X^1 \Sigma_n^*$ and the primarily repulsive $b^3 \Sigma_n^*$ states, respectively.

When one or both of the collision partners is a molecule, we apply the formulation of Parker and Pack²³ that was derived using centrifugal and sudden approximations. Thus, for $H-H_2$ collisions, $\bar{Q}_n(E)$ has been obtained from an average over orientations

$$\bar{Q}_n(E) = \int_0^{\pi/2} d\gamma Q_n(E, \gamma) \sin \gamma$$
 (2)

where the polar angle γ describes the geometry of the colliding pair as described in Ref. 24. A transformation has been applied to convert the H₂-H₂ potential energy surface of Ref. 15 from the space-fixed frame to the body-fixed frame; the appropriate average $\bar{Q}_n(E)$ was then calculated from

$$\bar{Q}_n(E) = \frac{1}{\pi} \int_0^{\pi} d\phi \int_0^{\pi/2} d\gamma_1 \int_0^{\pi/2} d\gamma_2$$

$$\times Q_n(E, \gamma_1, \gamma_2, \phi) \sin \gamma_1 \sin \gamma_2$$
(3)

where γ_i is the polar angle for the *i*th molecule, and the azimuthal angle ϕ specifies the relative orientation of the two molecules.

Consistent with a quantum mechanical formulation of the scattering, 23 the transport cross sections Q_n are determined from the scattering phase shifts η_l that are calculated from the central-field potential energy for a state of Eq. (1) or an orientation specified by the angles of Eqs. (2) and (3), i.e.,

$$Q_n = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} \sum_{\nu>0}^{n} a_{n\nu}^l \sin^2(\eta_{l+\nu} - \eta_l)$$
 (4)

where the allowed values of v are even or odd according to the parity of n. The coefficients a_{nv}^{l} can be determined from recursion relations.²⁵

The mean collision integrals $\sigma^2 \bar{\Omega}_{n,s}(T)$ are determined from

an average over a Maxwell-Boltzmann velocity distribution,²⁰ i.e..

$$\sigma^2 \bar{\Omega}_{n,s}(T) = \frac{F(n,s)}{2(\kappa T)^{s+2}} \int_0^\infty e^{-E/\kappa T} E^{s+1} \bar{Q}_n(E) dE$$
 (5)

where κ is the Boltzmann constant, T is the kinetic temperature, and F(n, s) is a hard-sphere factor.²³

The $\eta_l(E)$ have been calculated at lower E from a numerical integration of the Schroedinger equation, using the method presented by Levin et al. ²⁶ A semiclassical method is used to determine $\eta_l(E)$ at E above a threshold energy E_n , where the difference in the cross sections between the two methods does not exceed 0.3%. ²⁵ (Hence, there is a small uncertainty in the cross sections of the present calculation for a small range of E above E_n)

The numerical integrations of Eqs. (2) and (3) have been carefully performed to assure that interpolated values of Q_n for orientations near the endpoints of the integral reflect the symmetry of the collision pair and that the orientations selected are sufficient to provide convergence.

We have shown that the sudden approximations yield H-H₂ collision integrals that are accurate¹⁴; i.e., our calculated values of the diffusion and viscosity coefficients agree with the cor-

Table 1 H-H mean transport cross sections (a_0^2)

$E(E_h)$	$\bar{Q}_1(E)$	$\bar{Q}_2(E)$	$\bar{Q}_3(E)$
0.0060	72.08	54.77	82.79
0.0080	71.89	55.78	81.70
0.0100	66.33	50.95	75.26
0.0120	61.38	47.46	71.51
0.0150	57.83	44.80	66.81
0.0200	52.34	40.29	61.33
0.0300	44.25	34.79	52.55
0.0400	40.34	32.33	48.56
0.0500	38.70	29.42	46.05
0.0600	35.20	27.61	42.47
0.0800	27.58	26.98	34.57
0.1000	22.11	24.75	30.45
0.1500	14.50	18.40	23.45
0.2000	10.66	14.11	18.43
0.3000	6.80	9.36	12.46
0.4000	4.88	6.85	9.20
0.5000	3.74	5.33	7.19
0.6000	3.00	4.32	5.85

Table 2 H-H₂ mean transport cross sections (a_0^2)

cross sections (a))								
$E(E_h)$	$\bar{Q}_1(E)$	$\bar{Q}_2(E)$	$\bar{Q}_3(E)$					
0.0001	121.86	101.73	143.08					
0.0002	102.42	83.09	117.81					
0.0003	94.15	75.06	107.45					
0.0005	85.11	68.91	96.86					
0.0007	79.54	64.91	90.77					
0.0010	73.80	60.92	84.71					
0.0020	62.89	53.44	73.49					
0.0030	56.60	49.10	67.07					
0.0040	52.16	46.00	62.53					
0.0050	48.73	43.59	59.01					
0.0060	45.95	41.62	56.14					
0.0080	41.58	38.48	51.62					
0.0100	38.22	36.04	48.12					
0.0150	32.21	31.58	41.79					
0.0200	27.97	28.39	37.33					
0.0300	22.39	23.75	31.16					
0.0400	18.81	20.50	26.94					
0.0500	16.31	18.10	23.83					
0.0600	14.46	16.24	21.42					
0.0800	11.86	13.54	17.92					
0.1000	10.12	11.68	15.48					

responding results from close-coupling calculations to within 1%. The theoretical diffusion agrees well with measurements at room temperature. ¹⁴ Furthermore, we have also shown that our calculated viscosity for H_2 – H_2 collisions agrees well with the corresponding measured results in the low-T region, where the uncertainty in the experimental data is relatively small. ¹⁴

The cross sections are needed to determine the transport properties when a Maxwellian velocity distribution is not applicable. The cross sections $\tilde{Q}_n(E)$ for H-H collisions exhibit an oscillatory behavior in the low-E region²⁶ (primarily, the structure of the cross sections arises from resonance scattering²⁷ because of the relatively deep potential well of the ground state); the values at high E are slowly varying and are shown

in Table 1. The cross sections for $H-H_2$ collisions are listed in Table 2. The values of $\sigma^2\bar{\Omega}_{n,s}(T)$ that were obtained using Eq. (5) for H-H interactions are contained in Table 3; the results for $H-H_2$ interactions can be found in Table 2 of Ref. 14. The large set of $\bar{Q}_n(E)$ for H-H interactions that are required to obtain the convergence shown in Table 3 are available from the authors upon request.

The H_2 – H_2 potential anisotropy is relatively small; the values of $\sigma^2 \bar{\Omega}_{2,2}$ calculated from $\bar{V}(r)$ are found to agree closely¹⁴, e.g., to within about three significant figures at $T \ge 200$ K, with the corresponding result obtained from the complete potential energy surface of Ref. 15. The values obtained from the dd' configuration are expected to yield better agreement¹⁹;

Table 3 H-H mean collision integrals (Å2)

<i>T</i> , K	$\sigma^2ar{\Omega}_{1,1}$	$\sigma^2ar{\Omega}_{1,2}$	$\sigma^2 ar{\Omega}_{1,3}$	$\sigma^2ar{\Omega}_{1,4}$	$\sigma^2 ar{\Omega}_{1,5}$	$\sigma^2ar{\Omega}_{2,2}$	$\sigma^2ar{\Omega}_{2,3}$	$\sigma^2ar{\Omega}_{2,4}$	$\sigma^2 \bar{\Omega}_{3,3}$
100	9.732	9.091	8.681	8.383	8.139	10.760	10.200	9.795	9.910
150	9.013	8.469	8.093	7.810	7.582	9.902	9.390	9.007	9.223
200	8.561	8.047	7.691	7.413	7.182	9.326	8.844	8.465	8.760
300	7.955	7.470	7.114	6.824	6.561	8.554	8.082	7.710	8.101
400	7.536	7.049	6.676	6.373	6.113	8.015	7.560	7.198	7.616
500	7.207	6.713	6.338	6.053	5.769	7.608	7.195	6.841	7.234
600	6.948	6.435	6.060	5.728	5.447	7.286	6.849	6.507	6.923
700	6.716	6.206	5.783	5.439	5.208	7.031	6.584	6.219	6.633
800	6.505	5.977	5.557	5.248	4.991	6.793	6.342	6.002	6.392
900	6.318	5.768	5.375	5.063	4.799	6.585	6.136	5.811	6.200
1,000	6.136	5.603	5.210	4.895	4.622	6.384	5.964	5.642	6.026
1,500	5.488	4.959	4.559	4.242	3.982	5.703	5.284	4.950	5.338
2,000	5.032	4.505	4.118	3.822	3.585	5.226	4.820	4.516	4.868
3,000	4.403	3.892	3.522	3.213	2.925	4.607	4.244	3.984	4.218
4,000	3.962	3.447	3.041	2.704	2.409	4.204	3.882	3.639	3.731
5,000	3.609	3.075	2.655	2.300	2.003	3.923	3.615	3.369	3.354
6,000	3.311	2.767	2.329	1.972	1.679	3.702	3.402	3.087	3.051
8,000	2.831	2.262	1.831	1.502	1.263	3.301	2.910	2.579	2.549
10,000	2.451	1.896	1.480	1.207	1.002	2.937	2.534	2.193	2.196
12,000	2.148	1.611	1.248	0.999	0.823	2.616	2.224	1.886	1.924
14,000	1.906	1.393	1.068	0.847	0.694	2.382	1.967	1.642	1.705
16,000	1.708	1.229	0.928	0.730	0.597	2.162	1.755	1.440	1.526
18,000	1.544	1.093	0.819	0.642	0.523	1.973	1.579	1.288	1.377
20,000	1.406	0.982	0.727	0.571	0.464	1.810	1.428	1.158	1.250
22,000	1.288	0.890	0.657	0.512	0.415	1.668	1.304	1.049	1.145
24,000	1.187	0.812	0.597	0.464	0.376	1.544	1.197	0.958	1.053
26,000	1.100	0.746	0.546	0.423	0.342	1.436	1.104	0.880	0.975
28,000	1.023	0.688	0.502	0.388	0.315	1.339	1.023	0.811	0.905
30,000	0.956	0.638	0.464	0.359	0.289	1.254	0.953	0.755	0.845
32,000	0.896	0.595	0.431	0.333	0.268	1.178	0.890	0.704	0.791
35,000	0.818	0.539	0.389	0.300	0.240	1.078	0.810	0.639	0.721
40,000	0.712	0.465	0.333	0.256	0.205	0.945	0.700	0.548	0.626
50,000	0.562	0.359	0.256	0.194	0.160	0.747	0.552	0.422	0.496

Table 4 H₂-H₂ mean collision integrals (Å²)

T, K	$\sigma^2ar{\Omega}_{1,1}$	$\sigma^2ar{\Omega}_{1,2}$	$\sigma^2 ar{\Omega}_{1,3}$	$\sigma^2ar{\Omega}_{1,4}$	$\sigma^2ar{\Omega}_{1,5}$	$\sigma^2ar{\Omega}_{2,2}$	$\sigma^2ar{\Omega}_{2,3}$	$\sigma^2ar{\Omega}_{2,4}$	$\sigma^2 \bar{\Omega}_{3,3}$
100	8.151	7.444	7.034	6.743	6.507	9.118	8.601	8.259	8.022
150	7.376	6.820	6.452	6.171	5.938	8.364	7.938	7.625	7.373
200	6.922	6.408	6.058	5.793	5.579	7.896	7.506	7.216	6.950
300	6.323	5.866	5.532	5.272	5.069	7.302	6.944	6.657	6.397
400	5.931	5.482	5.173	4.945	4.756	6.882	6.547	6.304	6.020
500	5.636	5.218	4,927	4.697	4.507	6.591	6.271	6.040	5.767
600	5.411	4.995	4.708	4.450	4.240	6.356	6.043	5.773	5.534
700	5.218	4.810	4.504	4.259	4.080	6.155	5.818	5.556	5.318
800	5.060	4.645	4.307	4.118	3.951	5.973	5.598	5.401	5.102
900	4.908	4.505	4.213	3.989	3.806	5.822	5.504	5.261	5.014
1,000	4.782	4.383	4.096	3.872	3.680	5.689	5.376	5.132	4.891
1,200	4.566	4.175	3.891	3.664	3.472	5.462	5.151	4.901	4.675
1,500	4.300	3.923	3.638	3.412	3.227	5.184	4.869	4.616	4.407
2,000	3.977	3.597	3.318	3.101	2.925	4.822	4.508	4.261	4.066
3,000	3.522	3.156	2.890	2.682	2.510	4.322	4.015	3.771	3.604
4,000	3.211	2.849	2.595	2.406	2.252	3.963	3.666	3.443	3.279
5,000	2.971	2.627	2.388	2.197	2.044	3.707	3.424	3.201	3.055
6,000	2.786	2.453	2.226	2.028	1.860	3.493	3.207	2.977	2.856
8,000	2.503	2.181	1.950	1.776	1.642	3.177	2.876	2.659	2.554
10,000	2.290	1.980	1.762	1.600	1.468	2.912	2.640	2.431	2.339

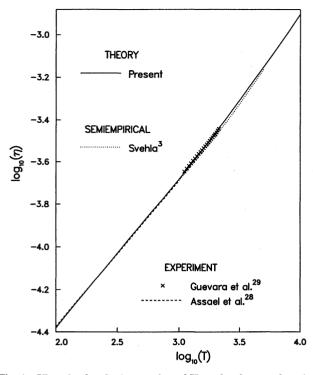


Fig. 1 Viscosity for the interaction of H_2 molecules as a function of temperature. The calculations for determining the theoretical curve (solid line) are described in the text. The experimental curve (dashed line) at low T is the fit of Ref. 28 to selected measured data. The data points at high T are obtained from the relative measurements of Ref. 29 normalized to the value of the present calculation at 1615 K. The dotted line represents the semiempirical result of Ref. 3.

in this case, we find agreement to within four significant figures. The values of the cross sections for high E of the present work have been calculated directly from the average potential described earlier; the collision integrals for H_2 – H_2 interactions are presented in Table 4. The expected accuracy (to within about 1%) of the results does not merit the number of significant figures shown in Tables 2 and 4; we have retained at least four significant figures, however, to facilitate interpolation of the data.

The result for the viscosity to second-order is compared with the correlation obtained by Assael et al.²⁸ from the measured low-T data and with the measured values of Guevara et al.²⁹ at high T in Fig. 1. We also show the semiempirical values of Ref. 3 at high T that were determined by adjusting results obtained from valence-bond energies³⁰ to agree with a fit to the correlation of Ref. 28.

In addition, we have approximated the effects of vibrational excitation, occuring at the higher temperatures, with a Boltzmann average^{31,32} of the cross sections obtained from the values of $\bar{V}(r)$ for the lowest vibrational states.²⁰ The result for the viscosity is only slightly lower than that shown in Fig. 1.

Transport Properties

The application of $\sigma^2\bar{\Omega}$ is illustrated by an examination of the transport properties of a mixture of a gas composed of hydrogen atoms and molecules when excitation and ionization are not taken into account. For convenience, we present our results using reduced transport coefficients. The binary (self for a pure gas) diffusion coefficient D in units of cm²/s can be obtained from a reduced coefficient D^* defined by

$$pD^*(T) = 10^4 T^{-3/2} pD(T) = 26.287 (2\mu)^{-1/2} / \sigma^2 \bar{\Omega}_{1,1}(T)$$
 (6)

similarly, the viscosity coefficient η in units of gm/(cm s) is obtained from

$$\eta^*(T) = 10^6 T^{-1/2} \eta(T) = 26.696(2\mu)^{1/2} / \sigma^2 \bar{\Omega}_{2,2}(T) \tag{7}$$

where $\sigma^2\bar{\Omega}$ is in Å² = 10⁻¹⁶ cm². The physical constants required²² for determining the coefficients of Eqs. (6) and (7) above were taken from Cohen and Taylor.³³

The quantities pD^* and η^* are shown in Figs. 2 and 3, respectively, as a function of temperature. Note that D^* for $H-H_2$ collisions does not lie between the H-H and H_2-H_2 curves as might be expected; this agrees with the behavior found in Ref. 2. Our results for the cross sections also support the explanation² for this abnormality; i.e., Q_n^X is large because of the strong interaction energies of the ground state.

The curves for η^* are shown in Fig. 4 for various values of the composition of a mixture gas. At low T, the quantity η^* increases monatomically from its value for a pure H gas with increasing mole fractions $X(H_2)$ of hydrogen molecules; at high T, however, it reaches a maximum for $X(H_2)$ slightly larger than 0.5 and then falls with increasing $X(H_2)$ to its value for a pure H_2 gas.

We have calculated the thermal diffusion factor α to include the second (lowest) and third-order effects^{22,34}; Fig. 5 shows α as a function of temperature for the various compositions of Fig. 4. Note that a temperature inversion³⁵ occurs for T slightly below 3000 K; from low-order expressions, ²² one finds roughly that this temperature T_i corresponds to

$$C^*(T_i) - 5/6 = 0 (8)$$

where the reduced collision integral C^* is defined²² as the ratio $\sigma^2 \bar{\Omega}_{1,2}/\sigma^2 \bar{\Omega}_{1,1}$. The quantity C^* can also be expressed³⁵ in terms of the derivative of $\sigma^2 \bar{\Omega}_{1,2}$ with respect to ℓn T; combining this result with Eqs. (6) and (7) yields

$$(d/d \ln T) \ln(pD^*) = \frac{1}{2}$$
 (9)

at T_i . Hence, the slope of pD^* for the H-H₂ interaction reveals the existence of a T_i ; note that the curvature of pD^* shown in

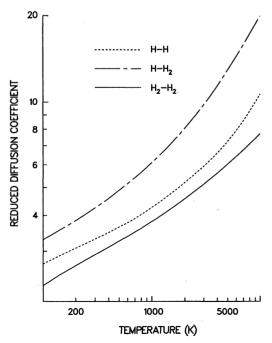


Fig. 2 Quantity pD^* calculated to third-order at a pressure of 1 atm as a function of temperature. The binary results for $H-H_2$ include a small correction for a 50/50 mixture (consisting of equal parts of atoms and molecules).

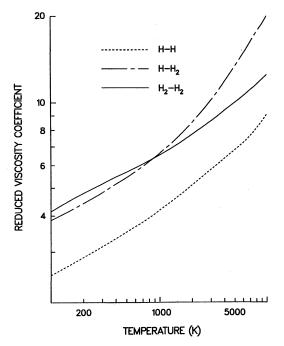


Fig. 3 Quantity η^* calculated to second-order as a function of temperature for various interactions.

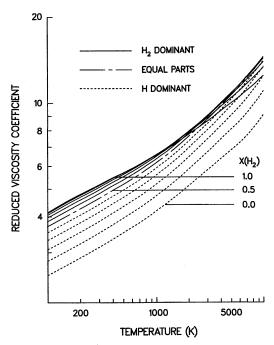


Fig. 4 Quantity η^* calculated to first-order as a function of temperature for various compositions of a hydrogen gas. The curves cover the range of the $X(\mathbf{H}_2)$ from 0 to 1 in increments of 0.1. The dashed lines are determined for $X(\mathbf{H}_2) < 0.5$, i.e., the H atoms provide the dominant composition of the gas, the long and short dashed curve represent $X(\mathbf{H}_2) = 0.5$, and the solid lines are for $X(\mathbf{H}_2) > 0.5$.

Fig. 2 indicates that pD^* is relatively sensitive to T_i . Using the values of Ref. 14 and Eq. (8), we find that T_i is about 2800 K; from the calculated values of α for Fig. 4, we find more precisely that it is 2840 K, for example, for a mixture of equal parts of H and H₂. These results are about a factor 3 lower than the results of earlier work. According to our formulation, it follows that H₂ and H migrate to the cooler and warmer regions, respectively, if T is below T_i , and vice versa if T is above T_i . Note from Fig. 5 that the quantity α rises and falls

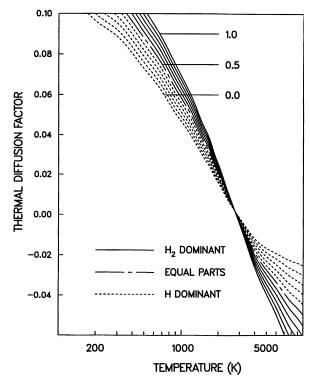


Fig. 5 Quantity α calculated to third-order as a function of temperature for various compositions of a hydrogen gas. The composition of the curves is the same as that described in Fig. 4.

monotonically with increasing $X(H_2)$ when T is below and above T_i , respectively.

Concluding Remarks

We have tabulated transport cross sections and collision integrals that are calculated from accurate potential energy data using approximations that have been tested by comparison with exact or measured results. The tabulated data have been applied to study the variation of the transport properties of a hydrogen gas with temperature and composition. In particular, the present results yield a significant improvement for thermal diffusion. In conclusion, we point out that our potential energy surfaces allow one to calculate the scattering for the vibrational transitions that are required for the determination of thermal conductivity.

Acknowledgment

Support to Eugene Levin was provided by Contract NAS2-14031 from NASA to the Eloret Corporation is gratefully acknowledged.

References

¹Megli, T. W., Krier, H., and Burton, R. L., "Plasmadynamics Model for Nonequilibrium Process in N_2/H_2 Arcjets," *Journal of Thermophysics and Heat Transfer*, Vol. 10, No. 4, 1996, pp. 554–562.

²Vanderslice, J. T., Weissman, S., Mason, E. A., and Fallon, R.J., "High-Temperature Transport Properties of Dissociating Hydrogen," *Physics of Fluids*, Vol. 5, No. 2, 1962, pp. 155–164.

³Svehla, R. A., "Transport Coefficients for the NASA Lewis Chemical Equilibrium Program," NASA TM 4547, April 1995.

⁴Stallcop, J. R., Partridge, H., and Levin, E., "Analytical Fits for the Determination of the Transport Properties of Air," *Journal of Physics and Heat Transfer*, Vol. 10, No. 4, 1996, pp. 697–699.

⁵Partridge, H., Stallcop, J. R., and Levin, E., "Potential Energies

⁵Partridge, H., Stallcop, J. R., and Levin, E., "Potential Energies and Collision Integrals for the Interactions of Air Components. I. *Ab initio* Calculation of Potential Energies and Neutral Interactions," *Molecular Physics and Hypersonic Flows*, edited by M. Capitelli, Kluwer, Dordrecht, The Netherlands, 1996, pp. 323–338.

⁶Stallcop, J. R., Bauschlicher, C. W., Partridge, H., Langhoff, S. R., and Levin, E., "Theoretical Study of Hydrogen and Nitrogen Inter-

actions: N-H Transport Cross Sections and Collision Integrals," *Journal of Chemical Physics*, Vol. 97, No. 8, 1992, pp. 5578-5585.

 7 Kołos, W., and Wolniewicz, L., "Potential-Energy Curves for the $X^1\Sigma_g^+$, $b^3\Sigma_u^+$, and $C^1\Pi_u$ States of the Hydrogen Molecule," *Journal of Chemical Physics*, Vol. 43, No. 7, 1965, pp. 2429–2441.

⁸Kołos, W., and Wolniewicz, L., "Variational Calculation of the Long-Range Interaction Between Two Ground-State Hydrogen Atoms," *Chemical Physics Letters*, Vol. 24, No. 4, 1974, pp. 457–463.

⁹Stallcop, J. R., Partridge, H., and Levin, E., "Potential Energies and Collision Integrals for the Interactions of Air Components. II. Scattering Calculations and Interactions Involving Ions," *Molecular Physics and Hypersonic Flows*, edited by M. Capitelli, Kluwer, Dordrecht, The Netherlands, 1996, pp. 339–349.

¹⁰Thakkar, A. J., "Higher Dispersion Coefficients: Accurate Values for Hydrogen Atoms and Simple Estimates for Other Systems," *Journal of Chemical Physics*, Vol. 89, No. 4, 1988, pp. 2092–2098.

¹¹Partridge, H., Bauschlicher, C. W., Stallcop, J. R., and Levin, E., "Ab initio Potential Energy Surface for H-H₂," Journal of Chemical Physics, Vol. 99, No. 8, 1993, pp. 5951-5960.

Physics, Vol. 99, No. 8, 1993, pp. 5951–5960.

¹²Bishop, D. M., and Pipin, J., "Vibrational Effects for the Dispersion-Energy and Dispersion-Polarizability Coefficients for Interactions Between H, He, and H₂," Journal of Chemical Physics, Vol. 98, No. 1, 1993, pp. 522–534.

¹³Tang, K. T., and Toennies, J. P., "A Model for the Potential Energy Surface of H-H₂ in the Intermediate and Long-Range Region," *Chemical Physics Letters*, Vol. 151, No. 3, 1988, pp. 301-307.

Chemical Physics Letters, Vol. 151, No. 3, 1988, pp. 301–307. ¹⁴Stallcop, J. R., Partridge, H., and Levin, E., "H–H₂ Collision Integrals and Transport Coefficients," *Chemical Physics Letters*, Vol. 254, No. 1, 1996, pp. 25–31.

¹⁵Schaefer, J., and Köhler, W. E., "Low Temperature Second Virial Coefficients of Para-H₂ Gas Obtained from Quantum Mechanical Pair Correlation Functions," *Zeitschrift fur Physik D—Atoms, Molecules and Clusters*, Vol. 13, No. 2, 1989, pp. 217–229.

¹⁶Scheafer, J., and Monchick, L., "Line Shape Cross Sections of HD Immersed in He and H₂ Gas. I. Pressure Broadening Cross Sections," *Journal of Chemical Physics*, Vol. 87, No. 1, 1987, pp. 171–181

¹⁷Schaefer, J., and McKellar, A. R. W., "Faint Features of the Rotational $S_0(0)$ and $S_0(1)$ Transitions of H_2 ," Zeitschrift fur Physik D—Atoms Molecules and Clusters, Vol. 15, No. 1, 1990, pp. 51–65.

¹⁸Schaefer, J., and McKellar, A. R. W., "Faint Features of the Rotational $S_0(0)$ and $S_0(1)$ Transitions of H_2 ," Zeitschrift fur Physik D—Atoms Molecules and Clusters, Vol. 17, No. 2, 1990, p. 231.

 $^{19}Stallcop,$ J. R., and Partridge, H., "The $N_2\!-\!N_2$ Potential Energy Surface," *Chemical Physics Letters*, Vol. 181, No. 1, 1996, pp. 212–220.

²⁰Meyer, W., Borysov, A., and Fommhold, L., "Absorption Spectra of H₂-H₂ Pairs in the Fundamental Band," *Physical Review A*, Vol. 40, No. 12, 1989, pp. 6931–6949.

²¹Dymond, J. H., and Smith, E. B., "The Virial Coefficients of Pure Gases and Mixtures," Oxford Univ. Press, Oxford, England, UK, 1980.

²²Maitland, G. C., Rigby, M., Smith, E. B., and Wakeham, W. A., *Intermolecular Forces. Their Origin and Determination*, Oxford Univ. Press, Oxford, England, UK, 1981.

²³Parker, G. A., and Pack, R. T., "Rotationally and Vibrationally Inelastic Scattering in the Rotational IOS Approximation. Ultrasimple Calculation of Total (Differential, Integral, and Transport) Cross Sections for Nonspherical Molecules," *Journal of Chemical Physics*, Vol. 68, No. 4, 1978, pp. 1585–1601.

²⁴Stallcop, J. R., Partridge, H., Walch, S. P., and Levin, E., "H-N₂ Interaction Energies, Transport Cross Sections, and Collision Integrals," *Journal of Chemical Physics*, Vol. 97, No. 5, 1992, pp. 3431–3436.

²⁵Levin, E., Partridge, H., and Stallcop, J. R., "Collision Integrals and High Temperature Transport Properties for N-N, O-O, and N-O," *Journal of Thermophysics and Heat Transfer*, Vol. 4, No. 4, 1990, pp. 469-477.

²⁶Levin, E., Schwenke, D. W., Stallcop, J. R., and Partridge, H., "Comparison of Semiclassical and Quantum Mechanical Methods for the Determination of Transport Cross Sections," *Chemical Physics Letters*, Vol. 227, No. 1, 1994, pp. 669–675.

²⁷Stallcop, J. R., Partridge, H., and Levin, E., "Resonance Charge Transfer, Transport Cross Sections, and Collision Integrals for N⁺(³P)–N(⁴S⁰) and O⁺(⁴S⁰)–O(³P) Interactions," *Journal of Chemical Physics*, Vol. 95, No. 4, pp. 6429–6439.

²⁸Assael, M. J., Mixafendi, S., and Wakeham, W. A., "The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density," *Journal of Physical and Chemical Reference Data*, Vol. 14, No. 4, 1986, pp. 1315–1322.

²⁹Guevara, F. A., McInteer, R. B., and Wageman, W. E., "High-Temperature Viscosity Ratios for Hydrogen, Helium, Argon, and Nitrogen," *Physics of Fluids*, Vol. 12, No. 12, 1969, pp. 2493–2505.

 30 Vanderslice, J. T., and Mason, E. A., "Interaction Energies for the H-H₂ and H₂-H₂ System," *Journal of Chemical Physics*, Vol. 33, No. 2, 1960, pp. 492–494.

³¹Stallcop, J. R., Partridge, H., and Levin, E., "Ab Initio Potential Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O₂ Interactions," *Physical Review A*, Vol. 53, No. 2, 1996, pp. 766–771.

³²Monchick, L., and Schaefer, J., "Theoretical Studies of H₂-H₂ collisions. II. Scattering and Transport Cross Sections of Hydrogen at Low Energies: Tests of a New *Ab Initio* Vibrotor Potential," *Journal of Chemical Physics*, Vol. 73, No. 12, 1980, pp. 6153-6161.
³³Cohen, E. R., and Taylor, B. N., "The 1986 CODATA Recom-

³³Cohen, E. R., and Taylor, B. N., "The 1986 CODATA Recommended Values of the Fundamental Physical Constants," *Journal of Physical and Chemical Reference Data*, Vol. 17, No. 4, 1988, pp. 1795–1803.

³⁴Mason, E. A., "Transport Properties of Gases Obeying a Modified Buckingham (Exp-Six) Potential," *Journal of Chemical Physics*, Vol. 22, No. 2, 1954, pp. 160–186.

³⁵Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., *Molecular Theory of Gases and Liquids*, Wiley-Interscience, New York, 1964.